GREEN SOCIAL HOUSING PROJECT PROGRAM IN LEBANON

Conceptual Design and Technical Documentation for Single-Detached Dwelling

Document prepared by New Technology Center at the request of Green Future Lebanon Holding

NEW TECHNOLOGY CENTER

Green Social Housing Project Program in Lebanon

Preamble

Given document represents a project of establishment of ecological (green) housing in various municipalities of Lebanon. The project is prepared by New Technology Center (www.woodservice.ge) at a request of Green Future Lebanon Holding (customer).

The preparation of document was based on the letter of Founder of Green Future Lebanon Holding - Mr. Bernard Ammoun on November 22, 2013. Based on the letter the design offer should include:

1- Structure design using Posi-Joist for wall, floor and roof taking into account extra loads and contribution of the concrete fill to the structural strength. Several special requirements also to maintain a continuous flow for the concrete mix throughout the walls and roof

2- MEP detailed shop drawings

3- Detailed BOQ for all house components (equipment list will be provided)

4- Detailed specifications

Interest of customer is construction of 1500 residential houses for various groups of society in different municipalities of Lebanon. Housing shall satisfy standards of sustainable construction and represent low emission buildings. Project is commercial and involves 70 % financing of costs by a beneficiary with the remaining costs co-financed by UNDP and Lebanese government.

Housing is designed taking into account ethnographic, geographic and geophysics requirements of Lebanon. Construction methodologies are based on British and European building codes.

Choice of construction methodologies was carried out considering opportunities of implementing European building technologies (prefabricated building components, doors, windows, inter-storey and roof trusses, wall panels, domestic and construction waste recycling etc) in Lebanon through arrangement of appropriate training courses.

Project is based on a single house case and is composed to optimize consumption of water resources, production of carbon emission, waste management, consumption of electricity, values of environment friendly and healthy housing during construction and habitation periods.

Statement from the authors

First of all we would like to note that in green construction process serious attention is paid to proper selection of building materials and technologies. Further if we are aiming to taking a path of going for LEED (or similar) certification we should be attentive to the use of materials produced in combustion chambers (concrete, metal, artificial stones and other) while taking into consideration construction norms.

Due to this when selecting construction methodologies for NAGEEB project an attention should be paid to economical as well as technological aspects of each methodology.

We would like to note Posijoist system is created for production of floor panels. It provides excellent results when bearing spans length is in 4-6.5 m range and communication shafts are required. Use of this system in floor significantly decreases transfer of sound waves and provides a good acoustic barrier. Considering the economical aspects use of this system is justified as costs of accomplishment of the adequate technical outcome using solid or glued timber components is 17% higher than in Posijoist system. Other advantages and characteristics of this system include:

Fig. 1

- Posi beams are sheer stiffer

- Posi beams can be manufactured with trimmable ends; this will enable the manufacturer to set a grid himself and adjust lengths at the building site. Trimmable ends mean higher tolerance towards error in sizing - Trimmable ends give flexibility of 400 mm on each side of Posi beam, in total 800 mm - Posi beams vibrate less and give more solid feel for the floor.

As stated above maximal span of Posijoist is 6 m and as project involves roofing a span of more than 7.3 m and loads on the roof are increased by placement of solar absorbers for free layout design of the mansard floor it is advisable to use prefabricated roof trusses. Very good performance is achieved by a hybrid of Posijoist with concrete. Use of such structure in floor panels provides a high characteristics of rigidity and acoustics.

Use of Posijoist system in wall panels as is given in COWOB technology has specific technical shortcomings that were taken into account in the project presented by us.

First of all I would like to note the fact that timber is dynamic material and is characterized by high coefficient of expansion, its volume change from winter to summer periods can reach up to 7-8%. Due to this we recommend to avoid using timber in concrete structures as changes in volume of a such extent leads to creation of cracks in concrete and eventual decomposition.

According to requirements of building physics concrete and wood structures should be used separately and connection of this two different materials should be carried out using special connectors as is shown in project

of New Technology Center (fig. 1).

OSB IV 25mm

Stone cladding

Enclosed to the document are two BOQ's: one for basic and one for alternative offer.

Due to the fact that there is a negative psychological factor in use of tim-

ber in Posijoist systems bottom and top beams that hinders promotion of houses a positive effect could be reached by using 1.4mm thick light metal profiles (so-called Ultraspan) in wall panel structure. Use of such system will practically remove all timber from wall panel (fig. 2).

When considering economic aspects hybrid of Utraspan with concrete will provide good results as well. Its efficiency will enable 82% cost reduction

The only disadvantage of this system is that the metal just like concrete is produced in combustion chambers when carbon emissions occur. This fact can lead to lowering "green" rating (compared to the case of Posijoist system) of the building during LEED (or similar) certification. However use of Ultraspan in flooring is not as efficient as Posijoist due to something called 'strong backs' in Posi beams are distributing loads better and creates better synergy of beams. They work as one piece of engineered floor. This is so etching you cannot do with ultra span. -flip top and bottom chord of Posi beam, hence increase load taking capability; Ultra span is always stiffer. Considering all of the above use of Ultraspan in wall panels as a fine alternative to Posijoist while still using Posijoist in flooring will provide significant financial effect on NAGEEB project. Use of such hybrid system can be beneficial for the project considering it is meeting the demands of NAGEEB project, is in full accordance to EC norms and can provide a real competitive advantage. Another noteworthy fact is that Ultraspan provides for first-class prospects of prefabrication of building components (wall panels). This methodology is approved and regulated by US and European norms and does not require additional registration of building codes or regulations. Below design project offers 2 choices of wall panel framing: a) Basic - Posijoist systemb

> b) Alternative - Ultraspan Hybrid System (details and drawings of alternative offer will be marked with blue frame and blue heading)

> > NEW -TECHNOLOGY CENTER

1.0 Location

Since the customer plans to build 1500 houses of this type in various municipalities of Lebanon after selection of territory for construction of a single or a number of houses it is necessary to consider sustainability factors for each of particular locations.

With this end in view it is advised:

- To orientate housing for most use of daylight and reduce needs for artificial lighting. For natural ventilation purposes use of prevailing wind is suggested. In addition protection against summer sun(shading plants, various screens) must be used.

- To design appropriate landscape architecture for particular locations aimed at decreasing the heat island effects and creating places of interest (pergola, barbecue deck, belvedere, garden furniture etc) close to the building. Specific plants and vegetation adapted to the particular locations to ensure cost-efficiency of maintenance must be selected.

- While selecting the site for the settlements it is important to avoid sensitive environments like agricultural territories, extremely humid areas or other natural habitat. It is recommended to select areas like old parking lots or depots, old production territories, abandoned or inactive spaces. Compactness of settlements shall be achieved and attention to proximity of civil infrastructure (bus, railroad station, recreational zones, schools, stores and other domestic objects) must be paid.

- Ramps and infrastructure for people with disabilities (to be able to move in a wheelchair or on a bicycles) must be considered.

2.0 Indoor Quality: Heating, Ventilation and Cooling

According to construction codes and norms to provide appropriate quality of air every building requires respective natural or mechanical ventilation. In green buildings this is achieved through proper orientation, streamlined windows and specially installed mechanical ventilation systems. In addition it is necessary to attain constant temperature inside the building. Therefore to solve particular operational tasks it is required to compose proper technological scheme that provides perpetual process of energy-efficient heating-cooling-ventilation in automatic regime.

As the project involves construction of building with residential status and some areas of the house will be used for preparing food, bathing, washing etc moisture will be generated. To get rid of the excess moisture a perpetual mechanical ventilation is required.

In particular cases it will be necessary to provide high speed air flow (for example during painting of walls, large number of guests, cigarette smoke etc).

In some of houses where inhabitants lead less active lifestyle or leave home for long periods, to retain microclimate respective equipment must be disconnected for a particular period of time.

Based on the above it is important to create a healthy constant microclimate inside the designed houses. In addition it is necessary to take into consideration needs of particular groups of people that will reside in each house. Therefore power schemes and architectural plans of the housing must provide flexibility to being easily adapted to inhabitants' needs.

Given project involves usage of technological scheme that includes traditional heating system together with nontraditional (alternative) heating sources generating wind, sun, geothermal, bio-heating energy to provide cost-efficiency of technological scheme (fig. 3). Such systems require low-temperature and high inertia radiators. As wall and floor panels of buildings are energy-efficiently connected to concrete slab according to the authors of the project it is possible to use this component for heating and cooling by modifying it into radi-

ator. Special pipes are integrated in the floor of the first storey and 90 cm of perimeter of walls from floor level in every room that provide constant temperature inside the building throughout all four seasons of the year through automated control Building Management System (BMS).

Energetic scheme is composed in such a manner that it is possible to disconnect or add separate component at any time. This provides for satisfying the needs of low and medium as well as high income families that reside in the houses.

NEW TECHNOLOGY CENTER

3.0 Insulation, soundproofing and energy-efficiency

Quality of the buildings is determined not only by its size, dimensions, facing and engineering and sanitary equipment but also by an envelope of the building that protects it from cold and heat, solar radiation, precipitation and other external influences and provides acoustic barrier.

Proper structuring of a building envelope using innovative method of sustainable construction provides mitigation, avoiding of natural phenomena and catastrophes (earthquake, flood, fire, storm etc).

Exceptionally critical are rates of heat insulation, soundproofing, fire resistance, moisture resistance and seismic stability.

During design of building components attention should be paid to weights and shapes of microscopic structures of shells of materials. It is important to note that while selecting the building materials their insulation as well as energy absorption and retention qualities must be preferential.

In comparison to other building materials strength and weight ratio is an advantage of timber. Due to its hydroscopic qualities timber is one of the best insulation and soundproofing materials. Its shell structure reduces distribution of electromagnetic and other waves (acoustic wave distribution speed in timber is approximately 10 times lower that in concrete and metal).

Lebanon is characterized by seismic activity that creates a significant hazard. Due to this, qualities of structural elements such as seismic resistance and light weight are of high importance. Timber frame buildings are fully meeting these requirements and sustain maximum stability during lateral shakes. To attain this, lightweight roof, wall panel and floor structures are used (timber is 7 times lighter than concrete and masonry) to convey the lateral shakes back to the ground through the walls. Noteworthy is level of elasticity of timber that significantly surpasses the same rate of concrete and masonry.

Fire represents a deadly hazard for inhabitants and structure of any building. Heat produced by fire alters structural quality of building materials and weakens the structure. As a result bearing elements of the building can lose stability and building may collapse. Considering this concrete is leaving no option and its use provides high levels of stability and fire resistance of the building. In addition concrete is characterized by high levels of energy retention which is important when aiming for energy-efficiency of the building.

Considering all of the above for this specific case design team proposed use of combined wall (concrete-posijoist(timber-met-

al web-timber)-stone fiber-air-composite wood-composite tile), floor and roof panels (fig. 4) that provides high levels of soundproofing and seismic stability while serving as an accumulator for heat energy.

Installation process used in this methodology is quick and easy, does not require establishment of special construction site, is cost-effective and provides high levels of energy-efficiency.

In case of proper planning high tempo of construction is achieved and the task ordered by customer is proficiently solved in the predetermined period of time.

5.0 Lighting

Lighting of the building in the project is accomplished through natural (windows, skylights, solar tubes) as well as artificial (economic LED bulbs) illumination. Low emission glass panes (that meet the standards of light transmission while ensuring high levels of energy-efficiency) inside hermetic timber frames will be used for skylights.

6.0 Waste management, separation, composting during construction and inhabitation periods

To achieve high quality of construction it is necessary to optimize waste generation and provide waste separation during construction as well as inhabitation of the building. To accomplish this project envisages economic usage of water resources with help of water saving kitchen, toilet and bathroom equipment. System involves rain water collection and filtration that enables use of collected water for technical purposes. After biological and mechanical treatment waste water is further used for irrigation (fig. 5).

- 1: RainKeeper self-cleaning filter.
- 2: Calmed inlet.
- 3: Floating intake.
- 4: Overflow Siphon.
- 5: Infiltration.
- 6: Integration controller.
- 7: Electronic pump control.
- 8: Pump.
- 9: Pressure tank.
- 10: Rainwater for washer, toilets, lawn hydrants, etc.

Building is equipped with BMS automated system that provides efficient consumption of energy and healthy indoor climate.

Interior and exterior design involves usage of recycled components of facing materials (tiles, linoleum, parquet, floor tiles, composite flooring, granite etc).

To provide separation of domestic waste building is equipped with organic matter composting, subject to recycling and non-organic waste separator.

As project involves construction of 1500 houses, 300-400 houses per year, it is expedient to establish industrial and domestic waste processing mini plant that will pick up and process construction and domestic waste during the construction process. This is easily achievable if houses are located in settlements that are 20-30 km apart. From individual separators waste is supplied to special processing area where it is recycled for construction and domestic purposes (fig 6).

Waste handling from start to PELLET

- value.
- they are needed.

Pellets

The key products of our technology are **Pellets** that have the calorific value of lignite and are stored indefinitely. In manufacturing, the resulting pollutants are not separated, but in the crystalline pellets bound (non-leachable). so that they can be used in all systems where lignite (coal) is used. Also by burning the pellets, the bounded pollutants cannot be released to the environment

Residue

residual ash. The pollutants remain crystalline bound in the ash.

Such processing ensures receiving and recycling any type of separated industrial and commercial waste (fig 7).

Technology converts unsorted household and specific types of industrial waste, in a closed system with high efficiency and no pollution, into pellet's with a high caloric value.

Delivery of the waste by truck (Pos. 1) and unloaded in the hall. The delivery quantity is determined by means o weight bridges. The waste storage area (capacity one weeks production) in the hall is closed off by gates and is aerated . The waste is sorted roughly, recyclables (eg. metals) are sorted out (Pos. 2).

In the crushing machines (Pos. 3, rotor mill) the material is milled

During a re-examination (Pos. 4 and 5) the Waste will be separated into light and heavy fractions.

In the drying process (Pos. 6), the moisture content will be reduced. The collected moisture is purified by known methods (degree of cleaning: useable surface water).

In the mixer (Pos. 7) the waste-flours are added, continuously and automatically, additives according our WP pellet system. This will complete the final product, crystalline binding of pollutants and ensuring lasting equal calorific

• The pellet production (Pos. 8-10) takes place in granulating presses: heated and pressed under high pressure through press filters and deposition of the material.

Subsequently, the cooling (Pos. 11) of the pellets in counter flow will follow.

• The finished fuel pellet storage (Pos. 12) has a half months capacity. The pellets can be stored for a long time until

This permanent binding of pollutants - in the production of pellets, in combustion, as in the resulting flue gases and the

The ash can be used in construction projects such as, cement manufacture, road construction etc

7.0 Green Construction Materials

The following checklist would be applied as a matter of principle for the selection and specification of green construction materials and their use in environmentally responsible design and construction.

* Use durable products and materials: Because manufacturing is very energy-intensive, a product that lasts longer or requires less maintenance usually saves energy. Durable products also contribute less to solid waste problems.

* Choose low-maintenance building materials: Where possible, select building materials that will require little maintenance (painting, retreatment, waterproofing, etc.), or whose maintenance will have minimal environmental impact.

* Choose building materials with low embodied energy: Heavily processed or manufactured products and materials are usually more energy intensive. As long as durability and performance will not be sacrificed, low-embodied-energy materials will be chosen.

* Buy locally produced building materials: Transportation is costly in both energy use and pollution generation. Locally produced materials will be sourced. Local hardwoods, for example, are preferable to tropical woods.

* Use building products made from recycled materials: Building products made from recycled materials reduce solid waste problems, cut energy consumption in manufacturing, and save on natural resource use. An examples of materials with recycled content are cellulose insulation, floor tile made from ground glass, recycled plastic lumber, etc.

* Use salvaged building materials when possible: Reduce landfill pressure and save natural resources by using salvaged materials: lumber, millwork, certain plumbing fixtures, and hardware, for example. It will be made sure these materials are safe (test for lead paint and asbestos), and would not sacrifice energy efficiency or water efficiency by reusing old windows or sanitation equipment.

* Seek responsible wood supplies: Use lumber from independently certified well-managed forests. Avoid lumber products produced from old-growth timber unless they are certified. Engineered wood can be substituted for old-growth Douglas fir, for example. Not to buy tropical hardwoods unless the seller can document that the wood comes from well-managed forests.

* Minimize use of pressure-treated lumber: Use detailing that will prevent soil contact and rot. Where possible, use alternatives such as recycled plastic lumber. Take measures to protect workers when cutting and handling pressure-treated wood. Scraps should never be incinerated. Least toxic preservatives to be sourced and applied per latest EuroCode specifications.

* Minimize packaging waste: Avoid excessive packaging, such as plastic-wrapped plumbing fixtures or fasteners that aren't available in bulk.

To instruct suppliers why are avoiding over-packaged products. Keep in mind, however, that some products must be carefully packaged to prevent damage and resulting waste.

* Avoid materials that will offgas pollutants: Solvent-based finishes, adhesives, carpeting, particleboard, and many other building products release formaldehyde and volatile organic compounds (VOCs) into the air. These chemicals can affect workers' and occupants' health as well as contribute to smog and ground-level ozone pollution outside.

* Avoid ozone-depleting chemicals in mechanical equipment and insulation: CFCs have been phased out, but their primary replacements--HCFCs--also damage the ozone layer and should be avoided where possible. Avoid foam insulation made with HCFCs. Reclaim CFCs when servicing or disposing of equipment.

Given project of housing construction involves use of green building materials. This is illustrated below with an example of the timber frame construction integrated with concrete and composite nontoxic stone components. Waste volume is optimized and is subject to recycling. Timber is obtained from certified sources and preserved according to BSEN-351, EN 599 (fig. 8).

8.0 Prospects of Obtaining Certificate and Rating from Green **Buildings Certification Authorities**

There is a number of certifying organizations in the world that based on various factors provide rating to the buildings. The below table provides information on general requirements of 5 leading certifying organization in the world:

Criterion	BREEAM	CASBEE	Green Star	LEED	DGNE Label
Management	+		+		+
Sustainable Sites				+	+
Indoor Environmental Quality		+	+	+	+
Quality of Service		+			+
Outdoor Environment		+			+
Energy	+	+	+	+*	+
Materials	+		+		+
Resources & Material		+		+	+
Off-Site Environment		+			(+)
Transport	+		+		+
Water	+		+	+**	+
Land Use & Ecology	+		+		+
Emissions/Pollution	+		+	+***	+
Innovation			+	+****	-
Health & Well-Being	+				

ologies.

development.

BREEAM (United Kingdom) has more than 100 000 certified projects since 1990, LEED (US) more than 16 000 certified projects since 1998, DGNB (Germany) more than 1 200 certified projects since 2009, Green Star (Australia) more than 9 000 certified projects since 2002, CASBEE (Japan) more than 2 000 certified projects since 2002.

As shown in the table the principles (Indoor environmental quality, energy, materials, water, land use and ecology, emission/pollution, innovation) that are to be used in construction of the building discussed in this document provide prospects to be certified even according to reguirements of DGNB. This is ensured by use of innovative wall panels and energy-efficient heating, ventilation and cooling systems in addition to waste management, collection of atmospheric precipitation, waste water recycling, efficient orientation of the building, emission reduction, green materials, use of solar energy and other green building method-

In case builder is interested in going through the certification procedures and obtaining certificate and rating from a specified authority, implementation of a given project provides this opportunity.

The building with such rating provides a strong opportunity of efficient

9.0 General Description of Construction Process

As site allocated for construction of houses presented in this project is unknown to the design team exact planning of construction process is impossible at this stage. In addition it is unknown whether the houses are built in groups or separately, if in groups what is size of each lot. Due to this construction process of a single house is discussed.

After locations and logistical schemes are streamlined construction process will be altered thoroughly. Timeline of activities and construction principles will be changed as well. However ideology of building and construction methodologies will remain the same.

Description of construction process discussed here is based on the fact that construction works are implemented by properly equipped professional building team. Construction process involves: planning of the building, production of drawings, obtaining financing, acquiring permission, mobilization, demarcation, preparation of ground and foundation, foundation and cellar wall construction, providing drainage, soil backfill, frame structuring, water supply, sewerage system installation, heating installation, electrical communication installation, exterior finishing, insulating, air and vapor isolation, interior finishing and painting.

Stage involving drawings, financing and acquiring permissions can be perceived as preliminary period that is required to prepare drawings and construction plans needed for construction of house at the specific location. During this stage construction teams will be formed. Laying of the roads to the construction site, temporary supply of electricity and other works needed for mobilization can also be implemented at this stage. However as specific location of construction site is yet unknown it is impossible to estimate time losses that may occur, provided time management does not include this stage.

As for the distribution of construction works in time activity plan is given in the Gantt chart below (click to open URL containing the pdf file). Starting date of 1st March of 2014 is conditional and provided for only estimation purposes.

10.0 Reference Budget of Construction Component

Development of ecological (green) buildings was assisted by increasing understanding that person's health is closely related to living conditions and economics. One of the major principles of sustainable construction is its economic feasibility. This is the principle that was used as a basis in designing green housing construction in Lebanon.

Diagram (fig. 9) illustrates scale of "greenness" and shows that with increase in "greenness" of building costs of operations is reduced and healthy living conditions for inhabitants are improved.

11.0 Project Team

stitution. Was the coordinator and supervisor of geophysical researches on the Trans Caucasian railway, Gali atomic power plant and Jhinvali power plant. During the last years under his supervision were set up infrastructures of Borjomi Kharagauli park, Mtatsmina amusement park, Kolkhety national reserve, Kobuleti nature reserve and many other large-scale and challenging projects, that include: Pharmaceutical factory for production of antibiotics, Poultry Farm with annual production of 15 000 tons, 300 house settlement for IDP's in Gori and Aghmashenebeli avenue Reconstruction project.

Such housing is energy-efficient and compared to conventional type operational costs are reduced by 20-30%. Given project is based on this principles.

As for the construction costs significant factor that affects them is proper planning of construction sites, logistical schemes, construction waste optimization, building teams etc.

In case various settlements are comprised of 50 or more buildings construction budget will be optimized and cost of construction per 1 sq. m. decreased by 10-15%.

Another important factor affecting the costs is the distance among various settlements. In case of proximity of the settlements logistics scheme can be improved leading to further decrease of costs by 3-5%.

Additional resource for cost reduction lies in proper organization of working teams. Increase of involvement of human resources living in municipalities close to construction sites can provide 15-20% reduction of hourly pay of construction.

Therefore proper planning of settlement locations, preparation of efficient master plan and work organization schemes, establishment of logistics center, production of prefabricated building components, use human resources from bordering municipalities can lead to reduction of construction costs per 1 sq. m. of building by 15-20% (see chapter ??? -BOQ) and become:

____ USD/m2 for building without interior finishing and refurbishment ____ USD/m2 for turnkey

ply peaks prevention. for HVAC.

Zaal Kheladze

Project Coordinator

Doctor of Geography and Geology. Founder and General Director of New Technology Center (former Wood Service) 50 years old, Georgian. Expert in timber processing industry with 12 years of experience. Internship training at "Andersen Windows and Doors" in USA, "Nach Floor" in Germany, "Loba" and "Stauf" in Denmark.

Also timber construction and processing training in the Danish New Technologies In-

Konstantin Kocura

MEP Engineer/BMS Designer

Konstantin Kocura holds a bachelor degree in real estate engineer and Master's degree in business management from Vilnius Gediminas Technical University. Has Electrical installations Job and Technical Project Supervisor Certificate (up to 1000V) By Ministry of Environment of the Republic of Lithuania. Konstantin has an extensive proffesional experience in Building automation engineering

and Project management for HVAC automation and BMS. Some of his most challenging and large-scale projects include:

- Four "MAXIMA" commercial centres in Riga, Latvia – overall plot 78000 sq. m. Complete centralized building management system for ventilation, central heating, air conditioning, external and internal lighting, electrical power sup-

- "Snaige Techprominvest" refrigerators factory in Kaliningrad, Russia. Complete centralized building management system for HVAC

- "Digital Television Systems" assembly plant in Gousev, Russia 15000 sg. m. Complete centralized building management system for ventilation

-455 MW combined cycle gas turbine project at Lithuanian power plant, Elektrenai, Lithuania, complete centralized building management system

Thomas Ulrich **Construction Methodology Expert**

Tomas is a professional construction manager and concrete work specialist. Has an excellent knowledge of underground and on ground building machinery and techniques. Has taken training courses in health and safety management and coordination. Has a professional working experience of 25 years as the construction manager and

coordinator of various large constructions in Germany and whole Europe. Worked as a coordinator and the person in charge of such large projects as the construction of the Hamburg N3 airport terminal, roof installations on residential complexes on the territory of Hamburg port etc. Also was a coordinator and person in charge for the concrete works of the Dizburg and the construction works of residential complexes in Sofia/Bulgaria. Thomas worked as construction manager in the project of 300 house construction in Gori financed by GIZ.

Giorgi Jamarjashvili Architect

Is an architect by profession. Is a master of Green Building Architecture and Urban Planning.

From 2007 Giorgi is employed by Wood Service and manages Design and Construction Engineering Department. Giorgi has completed training course

on operation of RoofCon/TrussCon software used for design and engineering of timber truss roofs and wood frame construction.

Over the years of his work in the company Giorgi took leading role in implementing many projects, including Pharmaceutical Factory in Tsilkani Village, Aragvi Adventure Center etc. He provided supervisory and consulting for projects implemented by Wood Service: Settlement of Internally Displaced Persons and Multifunctional Center in Gori, New Technology Center, and Roofing of houses on Aghmashenebeli Avenue etc.

Giorgi has also took part in composing of Wood Frame House Construction Guide published by Wood Service in 2010.

Giorgi was a member of architects' team that worked on New Technology Center building, that received Green Building awards by a number of authorities including Ministry of Economy and Sustainable Development of Georgia, Union of Architects of Georgia and Ministry of Environmental Protection of Georgia.

neering of Ilia State University providing lectures on Designing Management, Investment Planning.

Archil Papava

Marketing, Administrational and Project Management Support

Marketing professional, employed by Wood Service since 2005. Has more than 8 years experience in sales, marketing, vendor negotiations and management at the senior executive level. Skilled in developing and executing marketing and sales strategies and campaigns, planning and supervising ATL and BTL promotion, planning and

managing various projects. Creating, executing and adjusting project plans, managing project's work flows and performance for construction contracts, launching of new products and upgrading of guality control systems within office and production facility.

Has participated in the following training programs: Waste Management by USAID in CA, USA; Commercial Timber Production and Sawmills by Derome in Varberg, Sweden; Clean Development Mechanism (CDM) by Econ and Norsk Energy (Norway) in Tbilisi, Georgia; Timber Preservatives and Treatment Technologies by Arch Timber Protection in Castleford, UK; Innovative engineering solutions by MiTek Industries in Birmingham, UK; Engineered flooring by Weitzer-Parkett in Graz, Austria; Floor sanding machinery by Lägler in Güglingen-Frauenzimmern, Germany.

Giorgi Giorgadze Technical Consulting

Giorgi Giorgadze is experienced Urban Architecture Expert. He is an international consultant for UNDP/Kazakhstan in elaboration of the master plan for development of municipal housing infrastructure of the small cities. He worked as an expert for European Consulting for Developing Countries (ECFDC), was

a head specialist in Urban Planning Service and Architectural Service of Tbilisi city hall. Currently is a full time professor at College of Engi-

up the coastal monitoring and information systems for Georgia), environmental and social impact assessment, as well as the application of green design and development methodologies. He combines his practical hands-on experience in environmental management and research with wider scope of policy advice serving the Ministry of Environment as the National Focal Point on Integrated Coastal Zone Management (ICZM) and the Georgian Member of the ICZM Advisory Group to the Black Sea Commission.

Mamuka Gvilava

Environmental Expert

Mamuka Gvilava is specialized in a wide range of environmental subjects with more than 10 years of experience gained with cooperative projects in Georgia and in the Black Sea region. Physicist with education and science degree, expanded his field of activities to environmental and social subjects, such as integrated coastal management, environmental informatics (GIS & RS, with particular experience in setting

Udo Dagenbach

Urbanist (Landscape architect)

State approved landscape gardener, Certified Landscape Architect by Technical University (Berlin) in 1986, student of Japanese sculptor Professor Makoto Fujiwara, member of architectural association of Berlin (Nr. 05738), awarded with German landscape architecture

price 2007 from BDLA (1. Prize), received daylight spaces award 2007 - international architecture and design competition (1. Prize) and Made in Germany - Best of Contemporary architecture (2. Prize), is member of bdla - Bund Deutscher Landschaftsarchitekten and IFLA - International Federation of Landscape.

Some of his projects include design for Moabit Prison Historical Park and Imchenplatz in Berlin, Garden von Ehren in Hamburg, Taganskiy Park in Moscow and Imperial Wall Paper Garden in St.Petersburg.

NEW TECHNOLOGY CENTER

Green social housing programme in Lebanon

NEW TECHNOLOGY CENTER

Architectural part A 1-15 Constructive part K 1-18 Roof construction R 1-10 MAP engineering M 1-12

Green social housing programme in Lebanon

Architectural part

- A-1 ground floor plan
 A-2 first floor plan
 A-3 attic floor plan
 A-4 roof plan
 A-5 section 1-4
 A-6 section A-D
 A-7 visualization
- **A-8** visualization **A-9** visualization
- A-10 facade 1-4
- A-11 facade A-D
- **A-12** facade 4-1
- A-13 facade D-A
- A-14 specification of doors and windows
- A-15 specification of sunshade

and windows ade

 LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	l keylishyili

PROJECT №:	
FORMAT :	A3
SCALE :	1:75
DATE :	20.12.2013

 LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI TEL: +995 32 333650

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	I.kevlishvili

PROJECT №:		
FORMAT :	A3	
SCALE :	1:75	A-1 Alternative
DATE :	20.12.2013	

 LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	I.kevlishvili

PROJECT №:	
FORMAT :	A3
SCALE :	1:75
DATE :	20.12.2013

A-2

AR ENC

STATUS : Project DRAWING: first floor plan

PR FO

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	I.kevlishvili

PROJECT №:		
FORMAT :	A3	
SCALE :	1:75	A-2 Alternative
DATE :	20.12.2013	

DAT

 LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	I.kevlishvili

PROJECT №:	
FORMAT :	A3
SCALE :	1:75
DATE :	20.12.2013

A-3

AR EN

PR FO

SCA DA

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	I.kevlishvili
STATUS : Projec	xt

DRAWING: attic floor plan

ROJECT №:		
ORMAT :	A3	
CALE :	1:75	A-3 Alternative
ATE :	20.12.2013	

AR

ENC

SCA DAT

 LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	I.kevlishvili

STATUS : Project

DRAWING: roof plan

PROJECT №:	
FORMAT :	A3
SCALE :	1:50
DATE :	20.12.2013

A-4

C

PR

STA

PR FO

SC/ DAT

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	I.kevlishvili
ATUS : Project	t

DRAWING: roof plan

ROJECT №:		
ORMAT :	A3	
CALE :	1:50	A-4 Alternative
ATE :	20.12.2013	

FO SCA LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	I.kevlishvili

PROJECT №:	
FORMAT :	A3
SCALE :	1:50
DATE :	20.12.2013

AR ENC

DRAWING: section A-D

PR FO

SCA

DAT

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	I.kevlishvili

STATUS : Project

ROJECT №:	8.1.7
RMAT :	A3
ALE :	1:50
TE :	20.12.2013

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	I.kevlishvili

STATUS : Project

DRAWING: visualization

PROJECT №:		
FORMAT :	A3	
SCALE :	1:50	
DATE :	20.12.2013	

A-7

 LTD. NEW TECHNOLOGY CENTER
 GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km.
 TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	I.kevlishvili

STATUS : Project

DRAWING: visualization

PROJECT №:	
FORMAT :	A3
SCALE :	1:50
DATE :	20.12.2013

LTD. NEW TECHNOLOGY CENTER

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	I.kevlishvili
STATUS : Projec	t

DRAWING: visualization

PROJECT №:	8.1.1
FORMAT :	A3
SCALE :	1:50
DATE :	20.12.2013

CLIENT: GREEN FUTURE LEBANON

STATUS : Project

PR

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	I.kevlishvili

DRAWING: facade 1-4

PROJECT №:	
FORMAT :	A3
SCALE :	1:75
DATE :	20.12.2013

AR

PR FO

SC DA

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	l.kevlishvili
STATUS : Projec	t
DRAWING: facade	1-4

ROJECT №:		
ORMAT :	A3	
CALE :	1:75	A-10 Alternative
ATE :	20.12.2013	

DRAWING: facade A-D

PF

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	I.kevlishvili

STATUS : Project

PROJECT №:		
FORMAT :	A3	Λ 11
SCALE :	1:75	A-11
DATE :	20.12.2013	

EN

STA

PR

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
IGINEERING:	l.kevlishvili
ATUS : Project	t

DRAWING: facade A-D

PROJECT №:		
FORMAT :	A3	A 11 Alternative
SCALE :	1:75	A-IT Alternative
DATE :	20.12.2013	

 LTD. NEW TECHNOLOGY CENTER
 GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	I.kevlishvili

STATUS : Project

DRAWING: facade 4-1

PROJECT №:	
FORMAT :	A3
SCALE :	1:75
DATE :	20.12.2013

AR

EN STA

DR

PR FO

SCA

DA

CLIENT: GREEN FUTURE LEBANON

PROJECT:

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
IGINEERING:	l.kevlishvili
ATUS : Projec	t
AWING: facade	4-1

ROJECT №:		
ORMAT :	A3	
CALE :	1:75	A-12 Alternative
TE :	20.12.2013	

Dr

ARC

ENC

DRAWING: facade D-A

PR

SC/

 LTD. NEW TECHNOLOGY CENTER
 GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	I.kevlishvili

STATUS : Project

ROJECT №:	
RMAT :	A3
ALE :	1:75
TE :	20.12.2013

 LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	l.kevlishvili
STATUS : Projec	t

DRAWING: facade D-A

PROJECT №:		
FORMAT :	A3	
SCALE :	1:75	A-13 Alternative
DATE :	20.12.2013	

	Width:	0.70 m	
	Width: 0.70 m 6 piece(s) Height: 2.10 m DOO - 002 Opening orientation L Material Wd-Pine Vertical Width: 0.70 m Height: 2.10 m Width: 0.70 m Height: 2.10 m User ID DOO - 005 Opening orientation R Material Wd-Pine Vertical Width: 0.90 m Height: 2.50 m User ID DOO - 003 Opening orientation R Material Wd-Pine Vertical Width: 1.50 m Height: 2.50 m User ID DOO - 001 Opening orientation R Material wood Long-term preservation and surface finishing of timber Width: 1.50 m 1 piece(s) User ID DOO - 004		
	User ID	I	DOO - 002
	Opening or	ientation	L
	Material		Wd-Pine Vertical
	Width:	0.70 m	
	Height:	2.10 m	6 piece(s)
	User ID		DOO - 005
	Opening or	ientation	R
¢.	Material		Wd-Pine Vertical
ųv			
	Width:	0.90 m	
	Height:	2.50 m	1 piece(s)
	User ID	I	DOO - 003
	Opening or	ientation	R
k.	Material		Wd-Pine Vertical
¢			
UN			
	Width:	1.50 m	4
	Height:	2.50 m	1 piece(s)
	User ID		DOO - 001
	Opening or	ientation	R
	Material wood Long-term preservation and surface		
	finishing of timber		
	Width:	1.50 m	$1 \operatorname{piece}(s)$
	Height:	2.30 m	i piece(s)
	User ID		DOO - 004
	Opening or	ientation	L
	Material v	vood Long-term	preservation and surface
	f	inishing of timbe	r

	Width	•	0 70 m			
	Heigh	t:	2.00 m		2 piece(s)	
	User I	 D			DOO - 006	
	Openii	ng orientat	tion		L	
	Materi	al			Wd-Pine Vertical	
	Width	•	0.70 m		1 piece(s)	
	Heigh	t:	2.00 m		1 picce(3)	
	User I	D			DOO - 007	
é	Openi	ng orientat	tion		R	
	Materi	al			Wd-Pine Vertical	
		Width:	1	1.00 m	0 min	- (-)
\frown		Height:	1	1.75 m	o piec	e(s)
		User ID			WD -	002
		Opening	orientatior	n		0
		Material	wood Lor finishing	ng-term of timbe	preservation and super	rface
		Width:		1.20 m		
		Height:	1	1.75 m	4 piec	e(s)
		User ID			WD -	001
		Opening	orientatior	า		0
		Material	wood Lor finishing	ng-term of timbe	preservation and sur er	face
		Width:	(0.70 m	7 piec	e(s)
	1	Height:	(J.90 m		000
		User ID			vvD -	003
♥		Opening	orientation	n		0

Material wood Long-term preservation and surface

Material wood Long-term preservation and surface

3 piece(s)

WD - 004

0

finishing of timber

0.60 m

1.20 m

finishing of timber

Width:

Height:

User ID

Opening orientation

 \wedge

ARC

ENC

DRAWING: specification of doors and windows

PR FO SCA

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	I.kevlishvili

STATUS : Project

ROJECT №:	
ORMAT :	A3
ALE :	
TE :	20.12.2013

A-14

Width:	1.20 m	4
Height:	1.75 m	4 piece(s)
User ID		sunshade - 001
Opening orie	ntation	0
Material wo fini	od Long-term shing of timbe	preservation and surface er
Width:	1.00 m	6 niece(s)
Height:	1.75 m	0 picce(3)
User ID		sunshade - 002
Opening orie	ntation	0
Material wood Long-term preservation and surfa finishing of timber		

PR FO

SC DA

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	I.kevlishvili

STATUS : Project

DRAWING: specification of sunshade

ROJECT №:		
ORMAT :	A3	
CALE :		
ATE :	20.12.2013	

Green social housing programme in Lebanon

Constructive part

K-1 Fundament arrangement scheme K-2 Floor tiler reinforcement and anchorage disposition layouts K-3 layouts of disposition of separate armature fittings on the floor tile floor truss/wall connection K-4 DETAIL №1 Balcony K-5 DETAIL №2 K-6 DETAIL №3 K-7 DETAIL №4

- K-8 DETAIL №5
- K-9 DETAIL №6
- K-10 DETAIL №7
- K-11 DETAIL №8
- K-12 Wall section
- **K-13 Typical window installation**
- **K-14** Posy floor plan(GF)
- K-15 Posy floor plan
- K-16 Stairs
- K-17 chimney height the ridge
- K-18 frame

Fundament arrangement scheme

Anchorage-1

8*100*450

100

el-tis marka	pos. N	sketch or cut	Ø mm	Length mm	quant. pcs.	weight kg
_	1	Cut on place	12AIII	460 000		409,0
Strip foundation 5		550	6AI	1750	460	179,0
		G 1150	12AIII	1350	460	552,0
	4	280	6AI	450	225	23,0
	5	<mark>ල 1050 15</mark> 0	12AIII	1350	16	20,0
thic	6	1150	12AIII	1150	16	17,0
nonoli tairs	7	130	6AI	300	10	1,0
<u> </u>						

Metal Expenditure list - per stamp

		Profile	length	quant.	Weight kg.		
sta	N	FIOIIIC	mm.	pcs.	1 pcs.	Overall	Stamp
age	8	-8*100	450	1	3.00	3.00	
Jchol	9	Armature Ø22AIII	270	1	0.90	0.90	80 *2
tal al cs)							3.9 =7
Me (2p							

el-tis marka	Serial Number	Name	quant pcs.	weight kg.	Note		
	Strip foundation						
		concrete B-25	13.10	ṁ		PROJECT:	
	Monolithic walls						
		concrete B-15	12.20	mi		Green social nousing programme in leba	
	Monolithic steps						
		concrete B-25	0,50 r	ni		ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosrua	
		1					

STATUS : Project

PR

SC

- 1.Please consider the given paper in combination with remaining foundation documents
- 2.pouring concrete into "In situ wall" requires usage of manual vibrator
- 3.wall connection to the axis please refer to architectural drawings.
- 4.Foundation cavity is indicated conditionally on drawings, as the comprehensive geological analyses of building site has not been conducted yet
- 5. After digging out working trench, adjustment of foundation drawings to real life scenario is possible.
- 5. After digging out working trench, adjustment of foundation drawings to real life scenario is possible.
- EN1992-1 Eurocode 2: Design of concrete structures Part 1-1 -General rules and rules for buildings Part 1-2 General rules -Structural file design

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

ENGINEERING: I.kevlishvili

DRAWING: Fundament arrangement scheme

PROJECT №:	
FORMAT :	A3
SCALE :	1:100
DATE :	20.12.2013

K-1

1 - 1

2 - 2

Ш12А500

b-200 × 200

5Ш12A500

<u>2</u> Ш6АІ

b-200 . 5Ш12А500 300

-1,25

-0,05

300

700

1 Ш12А500 b-200

200

Anchorage -1

3 - 3

Register of armature fittings

	el-tis marka	pos. N	sketch or cut	\bigotimes_{mm}	Length mm	quant. pcs.	weight kg
		1	Cut on place	12AIII	460 000		409,0
	dation	2	550	6AI	1750	460	179,0
	Strip foun	3	1150	12AIII	1350	460	552,0
		4	280	6AI	450	225	23,0
		5	0 <u>5</u> 1050 150	12AIII	1350	16	20,0
	thic	6	1150	12AIII	1150	16	17,0
	nonoli airs	7	130	6AI	300	10	1,0
	_ ⊂ v						

Metal Expenditure list - per stamp

amp	stamb N	Profile	length mm.	quant. pcs.	Weight kg.		
sta		Frome			1 pcs.	Overall	Stamp
rage	8	-8*100	450	1	3.00	3.00	
Ichor	9	Armature Ø22AIII	270	1	0.90	0.90	0*2= 80
tal ar cs)							3.9 =7,
Me (2p]

Unit specification on mounting scheme

el-tis marka	Serial Number	Name	quant pcs.	weight kg.	Note
	Strip foundation				
		concrete B-25	9.50 r	ni	
	Monolithic walls				
		concrete B-15	12.20	mi	
	Monolithic steps				
		concrete B-25	0,50 r	ni	

DRAWING: Fundament arrangement scheme

PR

FO SC

DA

- 1.Please consider the given paper in combination with remaining foundation documents
- 2.pouring concrete into "In situ wall" requires usage of manual vibrator
- 3.wall connection to the axis please refer to architectural drawings.
- 4.Foundation cavity is indicated conditionally on drawings, as the comprehensive geological analyses
- of building site has not been conducted yet
- 5. After digging out working trench, adjustment of foundation drawings to real life scenario is possible.
- 5. After digging out working trench, adjustment of foundation drawings to real life scenario is possible.
- EN1992-1 Eurocode 2: Design of concrete structures Part 1-1 -General rules and rules for buildings Part 1-2 General rules -Structural file design

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	l.kevlishvili

STATUS : Project

ROJECT №:		
ORMAT :	A3	
ALE :	1:100	K-1 Alternative
TE :	20.12.2013	

AR

EN

STA DR

PR FO

SC

DATE :

det. #1

Floor tiler reinforcement and anchorage disposition layouts

Battery specifications for installation layouts

el-tis marka	Serial Number	Name	quant. pcs.	weight kg.	Note
	Floor slab				
		Concrete B-25	18,00mi		
		Anchorage A-2			
a - 2	Page k-	Anchorage A-2	74		

EN1992-1 Eurocode 2: Design of concrete structures Part 1-1 -General rules and rules for buildings Part 1-2 - General rules -Structural file design

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjash	G.jamarjashvili S.Tabatadze G.Khosruashvili							
IGINEERING	: I.kevlishvili								
ATUS : Pr	ATUS : Project								
AWING: Flo la	AWING: Floor tiler reinforcement and anchorage disposition layouts								
ROJECT №:									
ORMAT :	A3								
CALE :	1:100	K-2							

20.12.2013

Battery specifications for installation layouts

EN

FO SC

EN1992-1 Eurocode 2: Design of concrete structures Part 1-1 -General rules and rules for buildings Part 1-2 - General rules -Structural file design

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjasł	G.jamarjashvili S.Tabatadze G.Khosruashvili					
ENGINEERING	: I.kevlishvili						
STATUS : Pr	oject						
DRAWING: Floor tiler reinforcement and anchorage disposition layouts							
PROJECT №:							
FORMAT :	A3						
SCALE :	1:100	K-2	Alternative				
DATE :	20.12.2013]					

layouts of disposition of separate armature fittings on the floor tile

1 - 1

kg

80,0

63,0

Note

EN1992-1 Eurocode 2: Design of concrete structures Part 1-1 -General rules and rules for buildings Part 1-2 - General rules -Structural file design

 LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	I.kevlishvili

STATUS : Project

DRAWING: layouts of disposition of separate armature fittings on the floor tile

floor truss/wall connection

PROJECT №:		
FORMAT :	A3	
SCALE :	1:100	
DATE :	20.12.2013	

K-3

layouts of disposition of separate armature fittings on the floor tile

1 - 1

armaturis Reroebis uwyisi

el-tis marka	pos. N	sketch or cut	Ø mm	Length mm	quant. pcs.	weight kg
бL	1	1000	12AIII	1000	90	80,0
Floori	2	Cut on place	6AI	280 000		63,0

el-tis marka	Serial Number	Name	quant. pcs.	weight kg.	Note
		Basement wall			
		Concrete	2,70m	i	

EN1992-1 Eurocode 2: Design of concrete structures Part 1-1 -General rules and rules for buildings Part 1-2 - General rules -Structural file design

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	I.kevlishvili
ATUS : Project	t
AWING: layouts of disposition of separate armature	

fittings on the floor tile

floor truss/wall connection

PROJECT №:			
FORMAT :	A3		
SCALE :	1:100	K-3 Alternati	ve
DATE :	20.12.2013		

Α

Timber Treatment Durability of timber is ensured by treatment of wood with biopreservatives in a high pressure-vacuum treatment plant. Timber treated with preservative solution is specified for both in and out of ground and water contact applications where there is a medium to high risk of decay or insect attack. Timber treatment is conducted according to EN 335-1:1992; EN 335-2:1992; BSEN 351-1:1996; BSEN 351:1996 and EN 599-1.

ARC

ENC

PR FO

SC

DAT

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	I.kevlishvili

STATUS : Project

DRAWING: Balcony

ROJECT №:	
RMAT :	A3
ALE :	1:70
TE :	20.12.2013

K-4

Inside wall

Outside wall

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	I.kevlishvili

STATUS : Project

PROJECT №:	8.1.9
FORMAT :	A3
SCALE :	1:50
DATE :	20.12.2013

K-5

DA

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
IGINEERING:	I.kevlishvili

STATUS : Project

PROJECT №:		
FORMAT :	A3	
SCALE :		K-5 Alternative
DATE :	20.12.2013	

British Standard BS 6399: Loading of Buildings: -Part 1: Code of Practice for Dead and Imposed loads 1996

-Part 2: Code of Practice for Wind Loads 1997 -Part 3: Code of Practice for Imposwd Roof loads1988

Description of OSB according to EN 300 Rockwool insulation R=1,25Q.M/KVT .H=50MM 2lier

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	l.kevlishvili

STATUS : Project

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

ENC

STATUS : Project DRAWING: DETAIL №4

PR FO

 LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	I.kevlishvili

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

K-7

PE L ayer witch 10 cm XPS extended polystyrene, with closed strugrure of air bubbles. Magx factor of thermal isulation 0.05 kw/sg.m density of at least 200kg/kub.m

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili	
ENGINEERING:	l.kevlishvili	

STATUS : Project

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

K-8

SC DAT LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

Green social housing programme in lebanon

G.jamarjashvili S.Tabatadze G.Khosruashvili l.kevlishvili

STATUS : Project

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

G.jamarjashvili S.Tabatadze G.Khosruashvili
l.kevlishvili
6

PROJECT №:		
FORMAT :	A3	
SCALE :		K-9 Alternative
DATE :	20.12.2013	

ARC

ENC

PR

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	I.kevlishvili

STATUS : Project

DRAWING: DETAIL №7

PROJECT №:	8.1.13
FORMAT :	A3
SCALE :	1:50
DATE :	20.12.2013

K-10

DATE :

20.12.2013

roof tile batten horizontal batten vertical wind barrier **Rockwool** (can be substituted with other insulation material with adequate technical properties) humidity barrier **OSB III**

Timber Treatment Durability of timber is ensured by treatment of wood with bio-preservatives in a high pressure-vacuum treatment plant. Timber treated with preservative solution is specified for both in and out of ground and water contact applications where there is a medium to high risk of decay or insect attack. Timber treatment is conducted according to EN 335-1:1992; EN 335-2:1992; BSEN 351-1:1996; BSEN 351:1996 and EN 599-1. Description of OSB according to EN 300 NEW LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI TECHNOLOGY LANE 15 km. CENTER TEL: +995 32 333650 CLIENT: GREEN FUTURE LEBANON PROJECT: Green social housing programme in lebanon ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili ENGINEERING: l.kevlishvili STATUS : Project DRAWING: DETAIL №8 PROJECT №: FORMAT : A3 K-11 SCALE :

DATE :

20.12.2013

Timber Treatment Durability of timber is ensured by treatment of wood with biopreservatives in a high pressure-vacuum treatment plant. Timber treated with preservative solution is specified for both in and out of ground and water contact applications where there is a medium to high risk of decay or insect attack. Timber treatment is conducted according to EN 335-1:1992; EN 335-2:1992; BSEN 351-1:1996; BSEN 351:1996 and EN 599-1. Description of OSB according to EN 300 Doors and Windows Main characteristics of windows produced with German technology (according to PREN 14351-1 WI00033279) are: • Three layer glued bar Modern Fittings system • Long-term preservation and surface finishing of timber • Sealing rubber and aluminum gutter • Pane set 24 (4+16+4) mm *specifay window instalating layout with manufacturer NEW LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI TECHNOLOGY LANE 15 km. CENTER TEL: +995 32 333650 CLIENT: GREEN FUTURE LEBANON PROJECT: Green social housing programme in lebanon ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili ENGINEERING: I.kevlishvili STATUS : Project DRAWING: Wall section PROJECT №: FORMAT : A3 K-12 SCALE :

SC DA

Timber Treatment

Durability of timber is ensured by treatment of wood with biopreservatives in a high pressure-vacuum treatment plant. Timber treated with preservative solution is specified for both in and out of ground and water contact applications where there is a medium to high risk of decay or insect attack. Timber treatment is conducted according to EN 335-1:1992; EN 335-2:1992; BSEN 351-1:1996; BSEN 351:1996 and EN 599-1.

Description of OSB according to EN 300

Doors and Windows

Main characteristics of windows produced with German technology (according to PREN 14351-1 WI00033279) are:

- Three layer glued bar
- Modern Fittings system
- Long-term preservation and surface finishing of timber
- Sealing rubber and aluminum gutter
- Pane set 24 (4+16+4) mm

*specifay window instalating layout with manufacturer

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	I.kevlishvili

STATUS : Project

DRAWING: Wall section

PROJECT №:		
FORMAT :	A3	K 10 Altornativa
SCALE :		K-12 Alternative
DATE :	20.12.2013	

Typical window installation

AR

DRAWING: Typical window installation

PR

Timber Treatment

Durability of timber is ensured by treatment of wood with bio-preservatives in a high pressurevacuum treatment plant. Timber treated with preservative solution is specified for both in and out of ground and water contact applications where there is a medium to high risk of decay or insect attack.

Timber treatment is conducted according to EN 335-1:1992; EN 335-2:1992; BSEN 351-1:1996; BSEN 351:1996 and EN 599-1.

Description of OSB according to EN 300

Doors and Windows

Main characteristics of windows produced with German technology (according to PREN 14351-1 WI00033279) are:

- Three layer glued bar
- Modern Fittings system

· Long-term preservation and surface finishing of timber

- Sealing rubber and aluminum gutter
- Pane set 24 (4+16+4) mm

*specifay window instalating layout with manufacturer

LTD. NEW TECHNOLOGY CENTER

GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

_

ENGINEERING: I.kevlishvili

STATUS : Project

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

3

4

2

1

General Specification:

Irish Standard EC5:2006

- IS 444: The Use of Structural Timber in Building

British Standard BS 6399: Loading of Buildings: - Part 1: Code of Practice for Dead and Imposed Loads 1996. - Part 2: Code of Practice for Wind Loads 1997. - Part 3: Code of Practice for Imposed Roof Loads 1988.

Materials:

ber:

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili

ENGINEERING: I.kevlishvili

STATUS : Project

DRAWING: Posy floor plan

PROJECT №:		
FORMAT :	A3	
SCALE :	1:100	K-14
DATE :	20.12.2013	

General Specification:

Irish Standard EC5:2006

- IS 444: The Use of Structural Timber in Building

British Standard BS 6399: Loading of Buildings: - Part 1: Code of Practice for Dead and Imposed Loads 1996. - Part 2: Code of Practice for Wind Loads 1997. - Part 3: Code of Practice for Imposed Roof Loads 1988.

m	b	er	:	

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

Green social housing programme in lebanon

|--|

ENGINEERING: I.kevlishvili

STATUS : Project

DRAWING: Posy floor plan

PROJECT №:	
FORMAT :	A3
SCALE :	1:100
DATE :	20.12.2013

STAIRS

'arts of stairs: (A) risers and treads tongued and grooved together; (B) risers and treads onnected with angle blocks; (C) housed stringers; (D) cut-out stringer (open) showing alusters and mitre-nosing return.

PR

Timber Treatment

Durability of timber is ensured by treatment of wood with bio-preservatives in a high pressure-vacuum treatment plant. Timber treated with preservative solution is specified for both in and out of ground and water contact applications where there is a medium to high risk of decay or insect attack.

Timber treatment is conducted according to EN 335-1:1992; EN 335-2:1992; BSEN 351-1:1996; BSEN 351:1996 and EN 599-1.

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	I.kevlishvili
STATUS : Project	t

DRAWING: Stairs

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili

ENGINEERING: l.kevlishvili

STATUS : Project

DRAWING: chimney height the ridge

PROJECT Nº:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

K-17

SUBFLOOP

JOIGT

CEILING

CEILING

PARTITION WALL

JOIGT

NOTE: BLOCKING CAN BE ELIMINATED IF BEARING WALL ALIGNS W/ JOIGT.

A JOIGTS & BEARING WALL

 \bigotimes

C JOISTS & PARTITION WALL

CONNECTION W/ PLOOPE

SC DAT

Timber Treatment

Durability of timber is ensured by treatment of wood with biopreservatives in a high pressure-vacuum treatment plant. Timber treated with preservative solution is specified for both in and out of ground and water contact applications where there is a medium to high risk of decay or insect attack. Timber treatment is conducted according to EN 335-1:1992; EN 335-2:1992; BSEN 351-1:1996; BSEN 351:1996 and EN 599-1.

> LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

Green social housing programme in lebanon

GINEERING:	I.kevlishvili
CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

ENC

STA DR/

PR

FO SCA

DAT

Timber Treatment

Durability of timber is ensured by treatment of wood with biopreservatives in a high pressure-vacuum treatment plant. Timber treated with preservative solution is specified for both in and out of ground and water contact applications where there is a medium to high risk of decay or insect attack. Timber treatment is conducted according to EN 335-1:1992; EN 335-2:1992; BSEN 351-1:1996; BSEN 351:1996 and EN 599-1.

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
GINEERING:	I.kevlishvili
ATUS : Project	
AWING: frame	

ROJECT №:		
ORMAT :	A3	K 10 Alterrative
ALE :		K-18 Alternative
TE :	20.12.2013	

Green social housing programme in Lebanon

Roof construction

R-1 roof plan
R-2 roof F1
R-3 roof F2
R-4 roof FC1
R-5 roof M1
R-6 roof M2 M3
R-7 roof M4 M5
R-8 roof M6 M7

R-9 roof visualization **R-10** roof visualization

Bracings 4 pieces 42x100x3500

used as main building components. PrEN 14.545:20707 (E) 21.03.08 #63 PrEN 1995-1-1:2003(E)21.03.08 #56 EN 335_1:1992 21.03.08 #57 EN 335_2:1992 21.03.08 #58 BSEN 351_1:1996 21.03.08 #60 BSEN 351:1996 21.03.08 #61 EN 599-1 21.03.08 #62 BSEN 338:2003 21.03.08 #59

ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili ENGINEERING: I.kevlishvili

DRAWING: Roof plan

PR FO SC

NOTES: The enclosed elements which fully comply with European and British standards (EC5: Design of Timber Structures; Durability of wood and wood based products) are

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

STATUS : Project

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

R-1

LEMN:	GROSIME	42 mm			SETARI GENERALE:	
ELEMENT CONSTR.	LATIME mm	CLASA		ARCARE N/m²	GROSIME LEMN: (mm) INTERAX FERME: (mm)	42 640
11-14 1-14 18-6 6-19	140 140 140 140	C24 C24 C24 C24 C24	Da Da 400 400	260 260 2 2	ZONA CLIMATICA: CLASA DE SIGURANTA:	2
20-21	100	C24	Nu		INCARCARI (N/m ²):	
3-17 9-12 3-16 9-13 5-16 7-13 5-21 7-24 2-17	100 100 100 100 100 100 100 100	C24 C24 C24 C24 C24 C24 C24 C24 C24 C24	Nu Nu Nu Nu Nu Nu Nu Nu		INCARCARE ZAPADA (VALOAREA DE BAZA): INCARCARE VANT (VALOAREA DE BAZA): INCARCARI PERMANENTE: VEZI TABELUL DE L ALTE INCARCARI: VEZI NOTE DE CALCUL	400 1179 EMN

DIRECTII GENERALE:

CONSTRUCTIE CALCULATA CU PROGRAMUL DE CALCULATOR "TRUSSCON", LIC.NO: 13031 FORTELE AU FOST CALCULATE IN CORCONDANTA CU TEORIA DEFORMATIILOR DE ORDIN 1. COD LEMN: SR EN 1995+NA COD CONECTORI: SR EN 1995+NA; NOTES: The enclosed elements which fully comply with European and British standards (EC5: Design of Timber Structures; Durability of wood and wood based products) are used as main building components.

PrEN 14.545:20707 (E) 21.03.08 #63 PrEN 1995-1-1:2003(E)21.03.08 #56 EN 335_1:1992 21.03.08 #57 EN 335_2:1992 21.03.08 #58 BSEN 351_1:1996 21.03.08 #60 BSEN 351:1996 21.03.08 #61 EN 599-1 21.03.08 #62 BSEN 338:2003 21.03.08 #59

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

 ARCHITECT:
 G.jamarjashvili S.Tabatadze G.Khosruashvili

 ENGINEERING:
 I.kevlishvili

 STATUS :
 Project

DRAWING: roof F1

PROJECT №:		
FORMAT :	A3	
SCALE :		
DATE :	20.12.2013	

LEMN:	GROSIME	42 mm 4 PL	.IURI		SETARI GENERALE:		
ELEMENT CONSTR.	LATIME mm	CLASA		ARCARE N/m²	GROSIME LEMN: (mm) INTERAX FERME: (mm)	4 x 42 500	
9-11 1-11 14-5 5-15	140 140 140 140	C24 C24 C24 C24 C24	Da Da 400 400	260 260 600 600	ZONA CLIMATICA: CLASA DE SIGURANTA:	22	
16-17	100	C24 Nu C24 Nu C24 Nu C24 Nu C24 Nu C24 Nu C24 Nu C24 Nu C24 Nu C24 Nu	INCARCARI (N/m ²):				
4-17 6-20 5-11 4-13 6-10 2-13 8-10	100 100 100 100 100 100 100			INCARCARE ZAPADA (VALOAREA DE BAZA): 40 INCARCARE VANT (VALOAREA DE BAZA): 117			
					INCARCARI PERMANENTE: VEZI TABELUL I ALTE INCARCARI: VEZI NOTE DE CALCUL	DE LEMN	

DIRECTII GENERALE:

CONSTRUCTIE CALCULATA CU PROGRAMUL DE CALCULATOR "TRUSSCON". LIC.NO: 13031 FORTELE AU FOST CALCULATE IN CORCONDANTA CU TEORIA DEFORMATIILOR DE ORDIN 1. COD LEMN: SR EN 1995+NA COD CONECTORI: SR EN 1995+NA;

Р

NOTES: The enclosed elements which fully comply with European and British standards (EC5: Design of Timber Structures; Durability of wood and wood based products) are used as main building components.

PrEN 14.545:20707 (E) 21.03.08 #63 PrEN 1995-1-1:2003(E)21.03.08 #56 EN 335_1:1992 21.03.08 #57 EN 335_2:1992 21.03.08 #58 BSEN 351_1:1996 21.03.08 #60 BSEN 351:1996 21.03.08 #61 EN 599-1 21.03.08 #62 BSEN 338:2003 21.03.08 #59

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili ENGINEERING: I.kevlishvili STATUS : Project

DRAWING: roof F2

PROJECT №:		
FORMAT :	A3	
SCALE :		R-3
DATE :	20.12.2013	

INCARCARI PERMANENTE: VEZI TABELUL DE LEMN ALTE INCARCARI: VEZI NOTE DE CALCUL

PR

NOTES: The enclosed elements which fully comply with European and British standards (EC5: Design of Timber Structures; Durability of wood and wood based products) are used as main building components.

PrEN 14.545:20707 (E) 21.03.08 #63 PrEN 1995-1-1:2003(E)21.03.08 #56 EN 335_1:1992 21.03.08 #57 EN 335_2:1992 21.03.08 #58 BSEN 351_1:1996 21.03.08 #60 BSEN 351:1996 21.03.08 #61 EN 599-1 21.03.08 #62 BSEN 338:2003 21.03.08 #59

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili ENGINEERING: I.kevlishvili STATUS : Project

DRAWING: roof FC1

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

R-4

AR

ENG

STATUS : Project

PR

FO SC

DA

NOTES: The enclosed elements which fully comply with European and British standards (EC5: Design of Timber Structures; Durability of wood and wood based products) are used as main building components.

PrEN 14.545:20707 (E) 21.03.08 #63 PrEN 1995-1-1:2003(E)21.03.08 #56 EN 335_1:1992 21.03.08 #57 EN 335_2:1992 21.03.08 #58 BSEN 351_1:1996 21.03.08 #60 BSEN 351:1996 21.03.08 #61 EN 599-1 21.03.08 #62 BSEN 338:2003 21.03.08 #59

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

GINEERING:	I.kevlishvili
CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili

DRAWING: roof M1

OJECT №:	
RMAT :	A3
ALE :	
TE :	20.12.2013

R-5

_	450	, 1604	, 1504	k
,	1 1 . 450	310	1 18	
~			1	<u> </u>
_	400 [50 30	08	,
~	1 1	1	1	

LEMN:	GROSIME	42 mm			SETARI GENERALE:		LEMN:	GROSIM	E 42 mm			SETARI GENERALE:	
ELEMENT CONSTR.	LATIME mm	CLASA	CT W mm	CARCARE N/m²	GROSIME LEMN: (mm) INTERAX FERME: (mm)	42 650	ELEMENT CONSTR.	LATIME	CLASA		ARCARE N/m²	GROSIME LEMN: (mm) INTERAX FERME: (mm)	42 650
3-6 1-5 3-5 2-4 2-5	140 140 100 100	C24 C24 C24 C24 C24	400 Da Nu Nu	1600 260	ZONA CLIMATICA: CLASA DE SIGURANTA:	2 2	3-5 3-4 1-4 2-4	140 100 140 100	C24 C24 C24 C24	400 Nu Da Nu	1600 260	ZONA CLIMATICA: CLASA DE SIGURANTA:	2 2
2-0	100	024	Nu	12	INCARCARI (N/m²):							INCARCARI (N/m²):	
					INCARCARE ZAPADA (VALOAREA DE BAZA): INCARCARE VANT (VALOAREA DE BAZA):	400 1179						INCARCARE ZAPADA (VALOAREA DE BAZA): INCARCARE VANT (VALOAREA DE BAZA):	400 1179
DIRECTI	GENERA	LE:											
CONSTRUC DE CALCUL	TIE CALCUL	ATA CU PE SSCON". LI	ROGRAML C.NO: 130	JL 31									
TEORIA DE	FORMATIILO	R DE ORD	IN 1.	NDANTA CU	ALTE INCARCARI PERMANENTE: VEZI TABELUL DI ALTE INCARCARI: VEZI NOTE DE CALCUL							ALTE INCARCARI PERMANENTE: VEZI TABELUL DE I ALTE INCARCARI: VEZI NOTE DE CALCUL	LEMN
COD LEMN: COD CONE	SR EN 1995 CTORI: SR E	5+NA N 1995+NA	N;										

ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili ENGINEERING: I.kevlishvili

STATUS : Project

PR

NOTES: The enclosed elements which fully comply with European and British standards (EC5: Design of Timber Structures; Durability of wood and wood based products) are used as main building components.

PrEN 14.545:20707 (E) 21.03.08 #63 PrEN 1995-1-1:2003(E)21.03.08 #56 EN 335_1:1992 21.03.08 #57 EN 335_2:1992 21.03.08 #58 BSEN 351_1:1996 21.03.08 #60 BSEN 351:1996 21.03.08 #61 EN 599-1 21.03.08 #62 BSEN 338:2003 21.03.08 #59

 LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km.

TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

DRAWING: roof M2 M3

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

450

450

400

150

	-
	(

LEMN:	GROSIME	ME 42 mm SETARI GENERALE:			SETARI GENERALE:		LEMN:	GROSIME	E 42 mm			SETARI GENERALE:		
ELEMENT CONSTR.	LATIME	CLASA	CT10N mm	CARCARE N/m²	GROSIME LEMN: (mm) INTERAX FERME: (mm)	42 650	ELEMENT CONSTR.	LATIME mm	CLASA	CT W mm	CARCARE N/m²	GROSIME LEMN: (mm) INTERAX FERME: (mm)	42 650	
2-4 2-3 1-3	140 100 140	C24 C24 C24	400 Nu Da	1600 260	ZONA CLIMATICA: CLASA DE SIGURANTA:	2 2	2-4 2-3 1-3	140 100 140	C24 C24 C24	400 Nu Da	1600 260	ZONA CLIMATICA: CLASA DE SIGURANTA:	2 2	
											E.U. B. Cherk and D.			Ρ
					INCARCARI (N/m ²):							INCARCARI (N/m ²):		
					INCARCARE ZAPADA (VALOAREA DE BAZA): INCARCARE VANT (VALOAREA DE BAZA):	400 1179						INCARCARE ZAPADA (VALOAREA DE BAZA): INCARCARE VANT (VALOAREA DE BAZA):	400 1179	
														Α
														1
					INCARCARI PERMANENTE: VEZI TABELUL DE L ALTE INCARCARI: VEZI NOTE DE CALCUL	EMN						ALTE INCARCARI: VEZI NOTE DE CALCUL	EMN	E
														S

DRAWING: roof M4 M5

PR

NOTES: The enclosed elements which fully comply with European and British standards (EC5: Design of Timber Structures; Durability of wood and wood based products) are used as main building components.

PrEN 14.545:20707 (E) 21.03.08 #63 PrEN 1995-1-1:2003(E)21.03.08 #56 EN 335_1:1992 21.03.08 #57 EN 335_2:1992 21.03.08 #58 BSEN 351_1:1996 21.03.08 #60 BSEN 351:1996 21.03.08 #61 EN 599-1 21.03.08 #62 BSEN 338:2003 21.03.08 #59

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

RCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili NGINEERING: I.kevlishvili

STATUS : Project

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

R-7

T
-
-

LEMN:	GROSIM	E 42 mm			SETARI GENERALE:		LEMN:	GROSIM	E 42 mm			SETARI GENERALE:
ELEMENT CONSTR.	LATIME mm	CLASA	CT W mm	CARCARE N/m²	GROSIME LEMN: (mm) INTERAX FERME: (mm)	42 650	ELEMENT CONSTR.	LATIME mm	CLASA	CT W mm	CARCARE N/m²	GROSIME LEMN: (mm) 42 INTERAX FERME: (mm) 650
2-3	140	C24	400	1600	ZONA CLIMATICA: CLASA DE SIGURANTA:	2 2	2-3	140	C24	400	1600	ZONA CLIMATICA: 2 CLASA DE SIGURANTA: 2
					INCARCARI (N/m²):							INCARCARI (N/m²):
					INCARCARE ZAPADA (VALOAREA DE BAZA): INCARCARE VANT (VALOAREA DE BAZA):	400 1179						INCARCARE ZAPADA (VALOAREA DE BAZA): 400 INCARCARE VANT (VALOAREA DE BAZA): 1179
					INCARCARI PERMANENTE: VEZI TABELUL DI	ELEMN						
ALTE INCARCARI: VEZI NOTE DE CALCUL							ALTE INCARCARI. VEZI NOTE DE CALCOL					

STATUS : Project

PR

SC

DAT

NOTES: The enclosed elements which fully comply with European and British standards (EC5: Design of Timber Structures; Durability of wood and wood based products) are used as main building components.

PrEN 14.545:20707 (E) 21.03.08 #63 PrEN 1995-1-1:2003(E)21.03.08 #56 EN 335_1:1992 21.03.08 #57 EN 335_2:1992 21.03.08 #58 BSEN 351_1:1996 21.03.08 #60 BSEN 351:1996 21.03.08 #61 EN 599-1 21.03.08 #62 BSEN 338:2003 21.03.08 #59

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili ENGINEERING: I.kevlishvili

DRAWING: roof M6 M7

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

R-8

SCA DAT

NOTES: The enclosed elements which fully comply with European and British standards (EC5: Design of Timber Structures; Durability of wood and wood based products) are used as main building components.

PrEN 14.545:20707 (E) 21.03.08 #63 PrEN 1995-1-1:2003(E)21.03.08 #56 EN 335_1:1992 21.03.08 #57 EN 335_2:1992 21.03.08 #58 BSEN 351_1:1996 21.03.08 #60 BSEN 351:1996 21.03.08 #61 EN 599-1 21.03.08 #62 BSEN 338:2003 21.03.08 #59

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili

ENGINEERING: I.kevlishvili

STATUS : Project

DRAWING: roof visualization

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

NOTES: The enclosed elements which fully comply with European and British standards (EC5: Design of Timber Structures; Durability of wood and wood based products) are used as main building components.

PrEN 14.545:20707 (E) 21.03.08 #63 PrEN 1995-1-1:2003(E)21.03.08 #56 EN 335_1:1992 21.03.08 #57 EN 335_2:1992 21.03.08 #58 BSEN 351_1:1996 21.03.08 #60 BSEN 351:1996 21.03.08 #61 EN 599-1 21.03.08 #62 BSEN 338:2003 21.03.08 #59

 LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili

ENGINEERING: I.kevlishvili

STATUS : Project

DRAWING: roof visualization

PROJECT №:		
FORMAT :	A3	D 40
SCALE :		R-10
DATE :	20.12.2013	

Green social housing programme in Lebanon

MAP engineering

M-1 HVAK GF
M-2 HVAK I floor
M-3 HVAK II floor
M-4 Lighting plan GF
M-5 Lighting plan I floor
M-6 Lighting plan II floor
M-7 Low current plan GF
M-8 Low current plan I floor
M-9 Low current plan I floor
M-10 Sockets plan GF
M-11 Sockets plan I floor
M-12 Sockets plan II floor

PR

10/500	Section radiator (quantity /Hmm between the axes)
101	Room number
8 <mark>8 8</mark> 8 56/70	towel rail (Hsm/Lsm between the axes)
5/500	Radiator dimension
09	Riser. Ø25
ø25ø25	Pipelines diameters (Hot and cold.)
20 Ø32 Ø32	Pipelines diameters of sanitary water (Circulation, cold and hot.)
¢25	Drainage pipe diameter
	Supply pipe
	Returne pipe
	Sanitary hot water pipe (with protective layer)
	Cold water pipe Drainage pipe with inclination
	Air conditioning pipe (Cooper pipelines)
	Distribution manifold

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili
ENGINEERING:	I.kevlishvili

STATUS : Project

DRAWING: HVAK GF

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

M-1

ARC

DRAWING: HVAK I Floor

PR FO

	Cooline and the a
0/500	between the axes)
<u>101</u>	Room number
<mark>8⁸0</mark> g 56/70	towel rail (Hsm/Lsm between the axes)
5/500	Radiator dimension
09	Riser. Ø25
ø25ø25	Pipelines diameters (Hot and cold.)
0 Ø32 Ø32	Pipelines diameters of sanitary water (Circulation, cold and hot.)
Ø25	Drainage pipe diameter
	Supply pipe
	Returne pipe
	Sanitary hot water pipe (with protective layer)
	Cold water pipe
	Drainage pipe with inclination
	Air conditioning pipe (Cooper pipelines)

 LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km.

TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili

ENGINEERING: I.kevlishvili

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

M-2

10/500	Section radiator (q	uantity /Hmm	
101	Room number		
<u></u>	towel rail (Hsm/l sm betwe	on the avec)	
56/70	(Hallingall Detwo	en me axes)	
5/500	Radiator dimens	sion	
3	Riser. Ø25		
ø25ø25	Pipelines diameter (Hot and cold.)	ſS	
20 ø32 ø32	Pipelines diameter (Circulation, cold	rs of sanitary water and hot.)	
¢25	Drainage pipe d	iameter	
	Supply pip	e	
	Sanitary I	pe hot water pipe	
	Cold wate	ective layer) er pipe	
	Drainage p	ipe with inclination	
	Air conditio (Cooper pip	pelines)	
<mark>uuuuuu</mark>	Distributi	on manifold	
NEW		LTD. NEW	TECHNOLOGY
TECUN		CENTER GEORGIA	0131 TBILISI
ТЕСПІ	IULUG	DAVIT AG	HMASHENEBELI
CENTER LANE 15 km. TEL: +995 32 333650			
CLIENT: GREEN FUTURE LEBANON			
PROJECT:			
Green so	cial housing p	programme ir	n lebanon
ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili			
ENGINEERING: I.kevlishvili			
STATUS : P	roject		
DRAWING: HV	AK II Floor		
		-	
ΓΟΚΜΑΓ :	A3		
SCALE :			IVI-3
DATE :	20.12.2013	1	

ENGINEERING: I.kevlishvili

PR

FO SCA

DAT

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili

STATUS : Project

DRAWING: Lighting plan

ROJECT №:	
RMAT :	A3
ALE :	
TE :	20.12.2013

M-4

ENGINEERING: I.kevlishvili

DRAWING: Lighting plan I floor

PR

SCA

DAT

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

PR FO

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili
--

ENGINEERING: I.kevlishvili

STATUS : Project

DRAWING: Lighting plan II floor

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

ARC

DRAWING: low current plan GF

PR FO

SCA DAT

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ENGINEERING: I.kevlishvili

ROJECT №:	
RMAT :	A3
ALE :	
TE :	20.12.2013

M-7

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili ENGINEERING: I.kevlishvili

STATUS : Project

DRAWING:low current plan I floor

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

DRAWING: low current plan II floor

PR

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ARCHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili

ENGINEERING: I.kevlishvili

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

CENTER

ARCHITECT: G.jamarjashvili S.Tabatadze G.Khosruashvili ENGINEERING: I.kevlishvili

DRAWING: Sockets plan GF

PR FO

SCA DAT

GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

ROJECT №:	
RMAT :	A3
ALE :	
TE :	20.12.2013

AR

ENGINEERING: I.kevlishvili

DRAWING: Sockets plan I floor

PR FO

SCA DAT

GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili

ROJECT №:	
RMAT :	A3
ALE :	
TE :	20.12.2013

M-11

ARC

DRAWING: Sockets plan II floor

PR

SCA DAT

GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

CENTER

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili

ENGINEERING: I.kevlishvili

PROJECT №:	
FORMAT :	A3
SCALE :	
DATE :	20.12.2013

M-12

SC/

! The circuit further agrees with the manufacturer

LTD. NEW TECHNOLOGY CENTER GEORGIA 0131 TBILISI DAVIT AGHMASHENEBELI LANE 15 km. TEL: +995 32 333650

CLIENT: GREEN FUTURE LEBANON

PROJECT:

Green social housing programme in lebanon

CHITECT:	G.jamarjashvili S.Tabatadze G.Khosruashvili

ENGINEERING: I.kevlishvili

STATUS : Project

DRAWING: water collection system

ROJECT №:	
RMAT :	A3
ALE :	
TE :	20.12.2013

M-13